Protein kinase C regulation of corneal endothelial cell proliferation and cell cycle.
نویسندگان
چکیده
PURPOSE The purpose of this study was to determine the role of protein kinase C (PKC) in corneal endothelial cell proliferation. METHODS Immunocytochemistry and Western blotting were used to define the PKC isoforms expressed in primary cultures of rat corneal endothelial cells. For proliferation studies, primary cultures of rat corneal endothelial cells were serum-starved for 48 hours and incubated for 2 hours with the PKC inhibitors staurosporine (10(-9) to 10(-7) M), chelerythrine (10(-9) to 5 x 10(-8) M), or calphostin C (10(-9) to 10(-7) M). Individual PKC isoforms were inhibited using PKCalpha antisense oligonucleotide transfection or exposure for 1 hour to myristoylated, pseudosubstrate-derived peptide inhibitors against PKCalpha, -alphassgamma, -epsilon, and -delta (10(-8) to 10(-6) M). Cells were then stimulated with 2.5% serum for 24 hours. Cell proliferation was measured with bromodeoxyuridine (BrDU) and Ki67 immunocytochemistry. Protein level of cyclin E was determined by Western blotting. RESULTS PKCalpha, -ssII, -delta, -epsilon, -iota, -eta, -gamma, and -theta were detected in corneal endothelial cells. Maximum inhibition of PKC with staurosporine, calphostin C, and chelerythrine reduced cell proliferation to 7%, 31%, and 48% of control, respectively. Myristoylated peptide inhibition of PKCalpha and -epsilon reduced cell proliferation to 57% and 59% of control, respectively. PKCalpha antisense oligonucleotide reduced cell proliferation to 35% of control. Cyclin E protein level was decreased to 70%, 38%, 57%, and 43% of control in cells treated with calphostin C, staurosporine, chelerythrine, and PKCalpha antisense, respectively. CONCLUSIONS PKC activity, in particular PKCalpha and -epsilon activity, is important in promoting corneal endothelial cell proliferation. Inhibition of PKC activity prohibits G1/S-phase progression and reduces cyclin E protein levels.
منابع مشابه
Focal Adhesion Kinase (FAK) Involvement in Human Endometrial Remodeling During the Menstrual Cycle
Background: Endometrial remodeling occurs during each menstrual cycle in women. Reports have shown that, in a variety of cell types, processes such as proliferation, signaling complex formation and extra cellular matrix remodeling require a cytoplasmic tyrosine kinase, focal adhesion kinase (FAK). The present study has focused on the expression pattern of FAK in human endometrium during the men...
متن کاملA novel treatment approach for retinoblastoma by targeting epithelial growth factor receptor expression with a shRNA lentiviral system
Objective(s): Non-invasive treatment options for retinoblastoma (RB), the most common malignant eye tumor among children, are lacking. Epithelial growth factor receptor (EGFR) accelerates cell proliferation, survival, and invasion of many tumors including RB. However, RB treatment by targeting EGFR has not yet been researched. In the current study, we investigated the effect of EGFR down-regula...
متن کاملEffects of Antiproliferative Protein (APP) on Modulation of Cytosolic Protein Phosphorylation of Prostatic Carcinoma Cell Line LNCaP
Antiproliferative protein (APP) isolated from conditioned media of two androgen-independent prostatic carcinoma cell lines, PC3 and Du-145 was shown to inhibit selectively cell proliferation of androgen-dependent prostate cancer cell line LNCaP in a dose dependent manner. This protein was further purified with HPLC using hydrophobic interaction column (phenyl 5PW) and was used to study the modu...
متن کاملDecreasing expression of the G1-phase inhibitors, p21Cip1 and p16INK4a, promotes division of corneal endothelial cells from older donors
PURPOSE The current studies were conducted to determine whether the cyclin-dependent kinase inhibitors, p21Cip1 (p21 cyclin-dependent kinase-interacting protein 1) and p16INK4a (p16 cyclin-dependent kinase inhibitor 1A), help mediate G(1)-phase inhibition in human corneal endothelial cells (HCEC) by testing the effect of siRNA (small interfering RNA)-mediated down-regulation of the expression o...
متن کاملImpact of Ionizing Radiation on the Expression of CDC25A Phosphatase (in vivo)
Background and Objective: The cell division cycle 25 (CDC25)is a familyof highly conserved dual-specificity phosphatases that activate cyclin-dependent kinase complexes. These complexes are the main cell cycle regulators. Mammalian cells ,exposure to DNA damaging radiations such as ionizing radiation and ultraviolet light, prevent cell cycle progression by activation of checkpoint pathways an...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Investigative ophthalmology & visual science
دوره 41 13 شماره
صفحات -
تاریخ انتشار 2000